

A.O’Neil-Smith 1

Computer Music Journal May 24, 2015

Karplus-Strong Plucked
String Modeling in
MATLAB

Andrew O’Neil-Smith

 Frost School of Music

 Music Engineering Technology

University of Miami

 Coral Gables, FL 33146

Introduction

This project is based on the

Karplus-Strong plucked string-

modeling technique of digital audio

synthesis. MATLAB was used to code

both the graphical user interface and

the code structure behind it. It

demonstrates the different types of

sounds that can be created using the

Karplus-Strong technique.

Initial Need for a Plug-In
The main goal that I wanted to

achieve with this lab was to build a

cool user interface that took input

from the QWERTY keyboard when the

user pressed a key. Any plug-in I have

used for a bass or guitar input has the

notes mapped to a piano graphical

user interface.

The inspiration came from a cool

Google Chrome web app called Jam

With Chrome

(http://www.jamwithchrome.com/se

lect/). You can choose from drums,

guitar, keyboard, and bass. Each

instrument has an “Easy” and “Pro”

mode. The bass and guitar pro mode

maps each fret to a row on the

QWERTY keyboard. I thought it

would be cool to take that idea and

apply it to a graphical user interface

generated in MATLAB and use some

of the different synthesis techniques to

create unique bass tones.

Designing my Synthesizer
Almost immediately I ran into

problems that would plague idea

throughout the rest of the project. The

largest obstacle to overcome was

learning all about GUIDE, the

graphical user interface development

environment bundled with MATLAB.

I watched many helpful and not-so-

helpful videos on YouTube and the

A.O’Neil-Smith 2

Computer Music Journal May 24, 2015

Mathworks website. The MATLAB

help files were also very helpful

teaching me about how callback

functions worked and the different

parameters within GUIDE. The

elements I used in my GUI were push

buttons, static text boxes, a popup

menu, and axes for a plot. With just

these simple controls, I was able to

achieve my initial goal of having a fret

board on the QWERTY keyboard with

different selectable tones.

The graphical user interface implemented

with GUIDE.

An alternative design I was

thinking about using was having four

popup menus that would select a note

and then one single pushbutton to

play the selections from the menus. I

decided against this method even

though it would theoretically be easier

to implement because I wanted to stay

true to my original desire to have frets

mapped to keys. It would also not

sound very pleasing because the

frequencies on a bass guitar are too

low to sound good played together.

For the design of my graphical user

interface, I sketched out a drawing on

paper for my initial design. Then I

read all about GUIDE in the MATLAB

help files. I also watched several

videos online explaining the different

elements in GUIDE. From that, I was

able to decide which features my

synthesizer would have and the

easiest way to implement them. The

color scheme and overall look was

inspired by the AMS digital delay

outboard gear we have in the studio

here.

Coding my Synthesizer
My design for my interface maps

the keys [z,x,c,v,b] to the open low E

string to the fourth fret on a bass

guitar, [a,s,d,f,g] to the open A to the

fourth fret, [q,w,e,r,t,y] to the open D

A.O’Neil-Smith 3

Computer Music Journal May 24, 2015

to the fourth fret, and finally [1,2,3,4,5]

to the open G to the fourth fret.

It took me a while to understand

how the callback function linked up

and passed parameters with the push

buttons on-screen in the GUI. I was

able to at least test that the keys were

being detected by calling a function I

know would give me an error when I

pushed it. I called soundsc(y,Fs) and did

not pass ‘y’ to get that line to

intentionally fail. This way I was able

to verify that MATLAB was at least

registering the key push.

Flowchart of a Karplus-Strong filter.

When I first did the Karplus-Strong

filter in lab number six, I learned how

to write functions in MATLAB. Up

until that point, we had been running

all of the commands in one script. I

wrote a function called KSFilter that

would take an input signal and pass it

through the Karplus-Strong filter to

get a plucked string sound. I chose to

do four different excitations; sine

wave, square wave, impulse, and

noise.

This was the code for the

numerator and denominator I solved

for to get the Karplus-Strong filter:

N = [a a+1 1 zeros(1,L)];

D = [2 2*a zeros(1,L-2) -a*R^L

-R^L*(a + 1) -R^L]

Improvements on my
Design

If I were to come back and work on

this project some more, I would have

several things I would like to improve.

One bug I found was that the low

A#/Bb button would only play in sine

mode. The bass select menu would

jump back to the sine selection no

matter what you did to select it. I

suspect it had something to do with

the switch/case functions that I was

using to set the four options.

Speed of My Program

A.O’Neil-Smith 4

Computer Music Journal May 24, 2015

Another thing that is a limitation of

this synthesizer is that it runs very

slow. This is because it is monophonic;

there is no way to play more than one

note at a time with it. MATLAB must

finish playing the note before it will

play the next note.

Another thing that takes slows the

performance down is plotting the

waveform and displaying it on the

synthesizer. There are a few different

things I could try to improve this. One

would be to have all the plots stored

as images and just load them into the

desired area on the GUI. I do not have

any experience with images in

MATLAB so I am unsure if this would

be more efficient. A second way to

improve would be to only plot the

data in a certain range. I believe that I

plotted too much data; the more

points, the longer it takes to display. I

put zoom tools on the toolbar so the

user could zoom in on the waveform if

they desired. There could also be

different ranges for different types of

waveforms. The range for the sine

wave to look good versus the range

for a noise burst to look good is

different. This is something I would

like to improve in the future.

Another reason it might be slow is

that there is close to 1500 lines of code

in the project. While a lot of the code

was part of the automatically

generated GUI code, there are a few

things I think I could have done better

to reduce the amount of code. What I

wanted to do was have a frequency

associated with a keyboard button

press that would pass it as a variable

to the on-screen pressing of the note.

What ended up happening was I just

copied and pasted the same code from

the pushbutton section to the

keyboard detection section.

Organization of Code

The code is also somewhat

unorganized. Since it was auto-

generated by GUI, whenever I added a

part to the template, it generated code

in the script file. This meant that the

generated code had nothing to do with

the actual position of the pushbuttons

A.O’Neil-Smith 5

Computer Music Journal May 24, 2015

in the GUI. The way the code is

numbered and the way the

pushbuttons are displayed are not the

same. If I had a concrete plan before I

designed it in GUIDE, then the code

would’ve been in a better order.

For another iteration, I would like

to include some cool effects such as

distortion or an auto-wah effect. These

types of effects are something that

could be attached to a slider

somewhere on the GUI. The code

behind them is also something that

could be done with a little effort.

Conclusion
Overall, I had a lot of fun with this

project because I was able to create

something cool as a finished project.

All of the labs up to that point just put

out sound and graphs, but I was able

to put those less exciting elements into

a creative design that tied them all

together. I learned a lot about

graphical user interface design. There

were several things I think that I could

improve on if I came back to this

project in the future. I am really

looking forward to the next part of this

class where we design synthesizers in

a dedicated software environment.

 References
A Guide to MATLAB. 2006. Cambridge,

England: Cambridge University

Press.

Jaffe, David A., Smith III. Extensions of

the Karplus-Strong Plucked-String

Algorithm. 1983. Cambridge, MA:

MIT Press.

Karjalainen, Valimaki, Tolonen.

Plucked-String Models: From the

Karplus-Strong Algorithm to Digital

Waveguides and Beyond. 1998.

Cambridge, MA: MIT Press.

Smith III, J.O. Physical Modeling Using

Digital Waveguides. 1992.

Cambridge, MA: MIT Press.

Smith III, J.O. Viewpoints on the History

of Digital Synthesis. 2002. Stanford,

CA: Stanford Univeristy.

Steiglitz, K. A Digital Signal Processing

Primer. 1996. Menlo Park, CA:

Addison-Wesley Publishing Co.

Zolzer, Udo. Digital Audio Effects. 2011.

John Wiley and Sons, Ltd.

