AUDIO ELECTRONICS TEST 1

<u>dBs</u>

- $dB=20log(V_{measured}/V_{ref})$
- $dBV = 20 \log(V_{measured}/1V_{rms})$
- $dBu=20\log(V_{measured}/.775V_{rms})$

Nominal Levels

- Pro audio= +4dBu = 1.23 V_{rms}
- Consumer= -10dBV= .318V_{rms} (line level)

<u>Dynamic Range</u>: Difference between Noise floor and Max output level (MOL) <u>Signal to Noise ratio</u>: Difference between nominal level and noise floor <u>Headroom</u>: difference between nominal level and MOL

Unbalanced signal

- Two wires: hot, carrying signal, and ground
- Advantages:
 - Inexpensive
- Disadvantages:
 - Susceptible to noise
- Shielded unbalances cable
 - Wire mesh tube which encases hot signal, blocking/reducing high frequency interference (guitar cables)
 - Still susceptible to noise, longer cable= more noise

Balanced signals

- Three wire interface: Hot, ground, and cold
 - Hot and Cold 180° out of phase
 - Noise in phase for both signals
 - Subtraction of the two signals results in effectively cancelling noise while simultaneously adding the two signals resulting in twice as large an amplitude, (A-(-A)= 2A)
 - Two popular methods of creating subtraction
 - Op-amps
 - Transformers
- XLRs are most common example of balanced cables.

Dealing with complex numbers

Magnitude $|\mathbf{R}| = \operatorname{sqrt}(\mathbf{A}^2 + \mathbf{B}^2)$ Magnitude squared= $|\mathbf{R}^2| = \mathbf{A}^2 + \mathbf{B}^2$ Angle/Argument = Tan⁻¹ (B/A)

Basic electronic components and impedance

• Resistors(R), Capacitors(C), and Inductors (L) all oppose the flow of current, this opposition is called impedance (Z)

Resistor

- Resist (-_-) or oppose the flow of current, absorbing energy from the source by dissipating it as heat
- Resistance or a material is e measurement of its opposition capability in ohms (Ω)
- Oppose AC currents in the same way, regardless of frequency of oscillation
- Most important things about resistors:
 - AC voltage across and current through the resistor are
 - Related linearly by Ohm's Law
 - In phase which each other
- Ohm's law works for all DC and AC voltages and currents:

 \circ V=IR

- Know series and parallel resistor formulas
- Resistor Voltage Divider

$$\circ \quad V_{out} = V_{in}(R_2/R_1 + R_2)$$

Inductors

- A coil of wire that obeys Faraday's Law: current through a coil of wire create a magnetic field that opposes the current
- Measured in Henrys (H)
- Voltage leads current by 90° phase difference
- L: inductance
- Imaginary number J
 - J=sqrt(-1)
 - $J^2 = -1$
 - 1/J= -J
- Z_L=j ωL
 - $\circ \omega = 2\pi f$
- At DC= short circuit
- At F=infinity -> open circuit

Capacitors

- Two metal plates separated by a distance, dielectric material in between
- Uses an electric field(not magnetic) to exchange energy with the source
- Measured in Farads (F)
- Current leads voltage by 90° phase difference
- C= capacitance
- $\frac{7}{2} = \frac{1}{2} = 0$

2nd Order High-pass Design

2nd Order Low-pass Design

Special Names for Q Values

$$|H(\omega)|^{2} = \left(\frac{1}{1+j\omega RC}\right) \left(\frac{1}{1-j\omega RC}\right)$$
$$|H(\omega)|^{2} = \frac{1}{1+(\omega RC)^{2}}$$
$$|H(\omega)| = \frac{1}{\sqrt{1+(\omega RC)^{2}}}$$

First Order High-pass Filter (HPF)

2nd Order RLC Band-stop Filter

Shelving Filters

O Vout $\frac{2^{\text{nd}} \text{ Order } \mathbf{B} \mathbf{S} \mathbf{F}}{\mathbf{H}(\mathbf{s}) = \frac{(\mathbf{s}/\omega_0)^2 + 1}{(\mathbf{s}/\omega_0)^2 + (\mathbf{Q})(\mathbf{s}/\omega_0) + 1}}$ where $\omega_0 = \frac{1}{\sqrt{LC}}$ $\mathbf{Q} = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{\omega_0}{BW}$ 2nd Order BSF Transfer Function:

Low Shelving Transfer Function:

High Shelving Filter

Variable Low Shelving Filter

Variable High Shelving Filter

Band (Combination) Shelving Filter

Guitar and Bass Tone Controls

6th Order BSF (Matched Line Impedance Required)

3rd Order HPF (Matched Line Impedance Required)

